题目内容
【题目】如图,在锐角△ABC中,AC=8,△ABC的面积为20,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值是________.
【答案】5
【解析】
根据AD是∠BAC的平分线确定出点B关于AD的对称点B′在AC上,根据垂线段最短,过点B′作B′N⊥AB于N交AD于M,根据轴对称确定最短路线问题,点M即为使BM+MN最小的点,B′N=BM+MN,过点B作BE⊥AC于E,利用三角形的面积求出BE,再根据等腰三角形两腰上的高相等可得B′N=BE,从而得解.
∵AD是∠BAC的平分线,
∴点B关于AD的对称点B′在AC上,过点B′作B′N⊥AB于N交AD于M,如图,
由轴对称确定最短路线问题,点M即为使BM+MN最小的点,B′N=BM+MN,
过点B作BE⊥AC于E,
∵AC=8,S△ABC=20,
∴12×8BE=20,
解得BE=5,
∵AD是∠BAC的平分线,B′与B关于AD对称,
∴AB=AB′,
∴△ABB′是等腰三角形,
∴B′N=BE=5,
即BM+MN的最小值是5.
故答案为5.
练习册系列答案
相关题目
【题目】某校从两名优秀选手中选一名参加全市中小学运动会的男子米跑项目,该校预先对这两名选手测试了次,测试成绩如下表
甲的成绩(秒) | ||||||||
乙的成绩(秒) |
为了衡量这两名选手米跑的水平,你选择哪些统计量?请分别求出这些统计量的值.
你认为选派谁比较合适?为什么?