题目内容
【题目】如图,四边形ADBC内接于⊙O,AD平分∠EDC,AE∥BC交直线BD于E.
(1)求证:AE是⊙O的切线;
(2)若CD为直径,tan∠ADE=2,求sin∠BDC的值.
【答案】(1)见解析(2).
【解析】
(1)连接AB,连接AO并延长交BC于F,由圆内接四边形的性质得出∠ADE=∠ACB,再由圆周角定理证出∠ABC=∠ACB,得出AB=AC,得出AF⊥BC,证出AE⊥AF即可得出结论;
(2)连接AO并延长交BC于G,由圆周角定理得出∠DAC=∠CBD=90°,证出四边形AEBG是矩形,得出BG=AE,AG=BE,由三角函数得出AE=2DE,AC=2AD,AG=2CG=BC=2AE=4DE,得出AD=DE,CD=AD=5DE,即可得出结果.
(1)证明:连接AB,连接AO并延长交BC于F,如图1所示:
∵四边形ADBC内接于⊙O,AD平分∠EDC,
∴∠ADE=∠ACB,∠ADE=∠ADC,
∵∠ADC=∠ABC,
∴∠ABC=∠ACB,
∴AB=AC,
∴AF⊥BC
∵AE∥BC,
∴AE⊥AF,
∴AE是⊙O的切线;
(2)解:连接AO并延长交BC于G,如图2所示:
∵CD为直径,
∴∠DAC=∠CBD=90°,
∵AE∥BC,
∴∠E+∠CBD=90°,
∴∠E=90°,
∴四边形AEBG是矩形,
∴BG=AE,AG=BE,
∵∠ADE=∠ADC=∠ACB,
∴,
∴AE=2DE,AC=2AD,AG=2CG=BC=2AE=4DE,
∴AD=DE,CD=AD=5DE,
∴.
【题目】网上学习越来越受到学生的喜爱.某校信息小组为了解七年级学生网上学习的情况,从该校七年级随机抽取20名学生,进行了每周网上学习的调查.数据如下(单位:时):
3 | 2.5 | 0.6 | 1.5 | 1 | 2 | 2 | 3.3 | 2.5 | 1.8 |
2.5 | 2.2 | 3.5 | 4 | 1.5 | 2.5 | 3.1 | 2.8 | 3.3 | 2.4 |
整理上面的数据,得到表格如下:
网上学习时间(时) | ||||
人数 | 2 | 5 | 8 | 5 |
样本数据的平均数、中位数、众数如下表所示:
统计量 | 平均数 | 中位数 | 众数 |
数值 | 2.4 |
根据以上信息,解答下列问题:
(1)上表中的中位数的值为 ,众数的值为 .
(2)用样本中的平均数估计该校七年级学生平均每人一学期(按18周计算)网上学习的时间.
(3)已知该校七年级学生有200名,估计每周网上学习时间超过2小时的学生人数.