题目内容
【题目】对任意一个三位数,如果满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”的各个数位上的数字之和记为. 例如时,.
(1)对于“相异数”,若,请你写出一个的值;
(2)若都是“相异数”,其中,(,都是正整数),规定:,当时,求的最小值.
【答案】(1)见解析;(2).
【解析】
(1)由定义可得;
(2)根据题意先求出F(a)=x+3,F(b)=8+y,代入可得二元一次方程x+y=7,求出x,y的解代入可得k的值.
(1)若,请你写出一个的值为123(或132,或213,或231,或312,或321).
(2)∵都是“相异数”,
∴.
∵,
∴.
∴.
∵,都是正整数,
∴ 或 或 或 或 或
∵是“相异数”,∴,.
∵是“相异数”,∴,.
∴ 或 或
∴ 或 或
∴ 或 或 .
∴的最小值是.
【题目】二次函数y= ax+bx+c,自变量x 与函数y 的对应值如表:
x | ... | -5 | -4 | -3 | -2 | -1 | 0 | ... |
y | ... | 4 | 0 | -2 | -2 | 0 | 4 | ... |
下列说法正确的是( )
A. 抛物线的开口向下 B. 当x>-3时,y随x的增大而增大
C. 二次函数的最小值是-2 D. 抛物线的对称轴是x=-5/2
【题目】某校举办了一次趣味数学竞赛,满分100分,学生得分均为整数,达到成绩60分及以上为合格,达到90分及以上为优秀,这次竞赛中,甲乙两组学生成绩如下,甲组:30,60,60,60,60,60,70,90,90,100 ;乙组:50,60,60,60,70,70,70,70,80,90.
(1)以上成绩统计分析表中a=______分,b=______分,c=_______分;
组别 | 平均数 | 中位数 | 方差 | 合格率 | 优秀率 |
甲组 | 68分 | a | 376 | 30% | |
乙组 | b | c | 90% |
(2)小亮同学说:这次竞赛我得了70分,在我们小组中属于中游略偏上,观察上面表格判断,小亮可能是甲乙哪个组的学生?并说明理由
(3)计算乙组的方差和优秀率,如果你是该校数学竞赛的教练员,现在需要你选一组同学代表学校参加复赛,你会选择哪一组?并说明理由