题目内容
【题目】如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点.沿过点E的直线折叠,使点B与点A重合,折痕现交于点F.已知EF=cm, 则BC的长是_______________ .
【答案】cm
【解析】
由折叠的性质可知∠B=∠EAF=45°,所以可求出∠AFB=90°,再直角三角形的性质可知EF=AB,所以AB、AC的长可求,再利用勾股定理即可求出BC的长.
解:∵AB=AC,∠BAC=90°,
∴∠B=∠C=45°,
∵沿过点E的直线折叠,使点B与点A重合,
∴∠B=∠EAF=45°,
∴∠AFB=90°,
∵点E为AB中点,
∴EF=AB,EF= cm,
∴AB=AC=3 cm,
∵∠BAC=90°,
∴BC=cm.
故答案为:cm.
练习册系列答案
相关题目
【题目】某商店需要购进甲、乙两种商品共180件,其进价和售价如表:(注:获利=售价-进价)
甲 | 乙 | |
进价(元/件) | 14 | 35 |
售价(元/件) | 20 | 43 |
(1)若商店计划销售完这批商品后能获利1240元,问甲、乙两种商品应分别购进多少件?
(2)若商店计划投入资金少于5040元,且销售完这批商品后获利多于1312元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.