题目内容
【题目】如图,中,,点位于第一象限,点为坐标原点,点在轴正半轴上,若双曲线与的边、分别交于点、,点为的中点,连接、.若,则为_______________.
【答案】
【解析】
根据反比例函数关系式与面积的关系得S△COE=S△BOD=3,由C是OA的中点得S△ACD=S△COD,由CE∥AB,可知△COE∽△AOB,由面积比是相似比的平方得,求出△ABC的面积,从而求出△AOD的面积,得出结论.
过C作CE⊥OB于E,
∵点C、D在双曲线(x>0)上,
∴S△COE=S△BOD,
∵S△OBD=3,
∴S△COE=3,
∵CE∥AB,
∴△COE∽△AOB,
∴,
∵C是OA的中点,
∴OA=2OC,
∴,
∴S△AOB=4×3=12,
∴S△AOD=S△AOBS△BOD=123=9,
∵C是OA的中点,
∴S△ACD=S△COD,
∴S△COD=,
故答案为.
练习册系列答案
相关题目
【题目】抛物线中,函数值y与自变量之间的部分对应关系如下表:
… | 0 | 1 | … | ||||
y | … | 0 | … |
(1)求该抛物线的表达式;
(2)如果将该抛物线平移,使它的顶点移到点M(2,4)的位置,那么其平移的方法是____________.