题目内容

【题目】如图,ΔABC中,AD是高,AEBF是角平分线,它们相交与点O,∠BAC=50°,∠C=70°,则∠DAC的度数为__________,∠BOA的度数为__________

【答案】20° 125°

【解析】

因为AD是高,所以∠ADC=90°,又因为∠C=70°,所以∠DAC度数可求;因为∠BAC=50°,∠C=70°,所以∠BAO=25°,∠ABC=60°,BF是∠ABC的角平分线,则∠ABO=30°,故∠BOA的度数可求.

ADBC,∴∠ADC=90°

∵∠C=70°,∴∠DAC=180°﹣90°﹣70°=20°;

∵∠BAC=50°,∠C=70°,∴∠BAO=25°,∠ABC=180°-C-BAC=60°.

BF是∠ABC的角平分线,∴∠ABO=30°,∴∠BOA=180°﹣∠BAO﹣∠ABO=180°﹣25°﹣30°=125°.

故答案为:20°,125°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网