题目内容
【题目】如图,ΔABC中,AD是高,AE、BF是角平分线,它们相交与点O,∠BAC=50°,∠C=70°,则∠DAC的度数为__________,∠BOA的度数为__________.
【答案】20° 125°
【解析】
因为AD是高,所以∠ADC=90°,又因为∠C=70°,所以∠DAC度数可求;因为∠BAC=50°,∠C=70°,所以∠BAO=25°,∠ABC=60°,BF是∠ABC的角平分线,则∠ABO=30°,故∠BOA的度数可求.
∵AD⊥BC,∴∠ADC=90°
∵∠C=70°,∴∠DAC=180°﹣90°﹣70°=20°;
∵∠BAC=50°,∠C=70°,∴∠BAO=25°,∠ABC=180°-∠C-∠BAC=60°.
∵BF是∠ABC的角平分线,∴∠ABO=30°,∴∠BOA=180°﹣∠BAO﹣∠ABO=180°﹣25°﹣30°=125°.
故答案为:20°,125°.
练习册系列答案
相关题目