题目内容

【题目】如图,六边形ABCDEF的内角都相等,CF∥AB.
(1)求∠FCD的度数;
(2)求证:AF∥CD.

【答案】
(1)解:∵六边形ABCDEF的内角相等,

∴∠B=∠A=∠BCD=120°,

∵CF∥AB,

∴∠B+∠BCF=180°,

∴∠BCF=60°,

∴∠FCD=60°


(2)解:∵∠AFC=360°﹣120°﹣120°﹣60°=60°,

∴∠AFC=∠FCD,

∴AF∥CD.


【解析】(1)先求六边形ABCDEF的每个内角的度数,根据平行线的性质可求∠B+∠BCF=180°,再根据四边形的内角和是360°,求∠FCD的度数,从而求解.(2)先根据四边形内角和求出∠AFC=60°,再根据平行线的判定即可求解.
【考点精析】解答此题的关键在于理解平行线的判定与性质的相关知识,掌握由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质,以及对多边形内角与外角的理解,了解多边形的内角和定理:n边形的内角和等于(n-2)180°.多边形的外角和定理:任意多边形的外角和等于360°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网