题目内容
【题目】医学上某种还没有完全攻克的疾病,治疗时需要通过药物控制其中的两项指标H和V.现有..三种不同配方的药剂,根据分析,A,B,C三种药剂能控制H指标的概率分别为0.5,0.6,0.75,能控制V指标的概率分别是0.6,0.5,0.4,能否控制H指标与能否控制V指标之间相互没有影响. (Ⅰ)求A,B,C三种药剂中恰有一种能控制H指标的概率;
(Ⅱ)某种药剂能使两项指标H和V都得到控制就说该药剂有治疗效果.求三种药剂中有治疗效果的药剂种数X的分布列.
【答案】解:(Ⅰ)A,B,C三种药剂中恰有一种能控制H指标的概率为:
=0.5×(1﹣0.6)×(1﹣0.75)+(1﹣0.5)×0.6×(1﹣0.75)+(1﹣0.5)×(1﹣0.6)×0.75=0.275.
(Ⅱ)∵A有治疗效果的概率为PA=0.5×0.6=0.3,
B有治疗效果的概率为PB=0.6×0.5=0.3,
C有治疗效果的概率为PC=0.75×0.4=0.3,
∴A,B,C三种药剂有治疗效果的概率均为0.3,可看成是独立重复试验,即X~B(3,0.3),
∵X的可能取得为0,1,2,3,
∴ ,
即 ,
,
,
故X的分布列为:
X | 0 | 1 | 2 | 3 |
P | 0.343 | 0.441 | 0.189 | 0.027 |
【解析】(Ⅰ)利用相互独立事件概率乘法公式、互斥事件概率加法公式能求出A,B,C三种药剂中恰有一种能控制H指标的概率.(Ⅱ)求出A,B,C三种药剂有治疗效果的概率均为0.3,可看成是独立重复试验,即X~B(3,0.3),由此能求出X的分布列.
【题目】4月23人是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为“读书谜”,低于60分钟的学生称为“非读书谜”
(1)根据已知条件完成下面2×2的列联表,并据此判断是否有99%的把握认为“读书谜”与性别有关?
非读书迷 | 读书迷 | 合计 | |
男 | 15 | ||
女 | 45 | ||
合计 |
(2)将频率视为概率,现在从该校大量学生中,用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中的“读书谜”的人数为X,若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方程D(X) 附:K2= n=a+b+c+d
P(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |