题目内容
【题目】4月23人是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为“读书谜”,低于60分钟的学生称为“非读书谜”
(1)根据已知条件完成下面2×2的列联表,并据此判断是否有99%的把握认为“读书谜”与性别有关?
非读书迷 | 读书迷 | 合计 | |
男 | 15 | ||
女 | 45 | ||
合计 |
(2)将频率视为概率,现在从该校大量学生中,用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中的“读书谜”的人数为X,若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方程D(X) 附:K2= n=a+b+c+d
P(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
【答案】
(1)解:完成下面的2×2列联表如下
非读书迷 | 读书迷 | 合计 | |
男 | 40 | 15 | 55 |
女 | 20 | 25 | 45 |
合计 | 60 | 40 | 100 |
≈8.249
VB8.249>6.635,故有99%的把握认为“读书迷”与性别有关
(2)解:视频率为概率.则从该校学生中任意抽取1名学生恰为读书迷的概率为 .由题意可知X~B(3, ),P(x=i)= (i=0,1,2,3)
从而分布列为
X | 0 | 1 | 2 | 3 |
P |
E(x)=np= ,D(x)=np(1﹣p)=
【解析】(1)利用频率分布直方图,直接计算填写表格,然后利用个数求解K2 , 判断即可.(2)求出概率的分布列,然后利用超几何分布求解期望与方差即可.
练习册系列答案
相关题目