题目内容
【题目】已知甲、乙两地相距160km,、两车分别从甲、乙两地同时出发,车速度为85km/h,车速度为65km/h.
(1)、两车同时同向而行,车在后,经过几小时车追上车?
(2)、两车同时相向而行,经过几小时两车相距20km?
【答案】(1)经过8小时A车追上B车;(2)经过或1.2小时两车相距20千米
【解析】
(1)设经过x小时A车追上B车,根据A行驶的路程比B多160千米列出方程并解答;
(2)设经过a小时两车相距20千米.分两种情况进行讨论:①相遇前两车相距20千米;②遇后两车相距20千米.
解:(1)设经过x小时A车追上B车,根据题意得:
85x-65x=160,
解之得x=8,
答:经过8小时A车追上B车;
(2)设经过a小时两车相距20千米,分两种情况:
①相遇前两车相距20千米,列方程为:
85a+65a+20=160,
解之得a=;
②相遇后两车相距20千米,列方程为:
85a+65a-20=160 ,
解之得a=1.2 ,
答:经过或1.2小时两车相距20千米.
【题目】在一个不透明的盒子中装有a个除颜色外完全相同的红球和白球,其中红球有b个,将盒中的球摇匀后从中任意摸出1个球,记录颜色后将球放回盒中,重复进行这过程,如表记录了某班一次摸球实验情况:
摸球总数n | 400 | 1500 | 3500 | 7000 | 9000 | 14000 |
摸到红球数m | 325 | 1336 | 3203 | 6335 | 8073 | 12628 |
摸到红球的频率(精确到0.001) | 0.813 | 0.891 | 0.915 | 0.905 | 0.897 | 0.902 |
(1)由此估计任意摸出1个球为红球的概率约是 (精确到0.1)
(2)实验结束后,小明发现了一个一般性的结论:盒子中共有a个球,其中红球有b个,则摇匀后从中任意摸出1个球为红球的概率P可以表示为,这个结论也得到了老师的证实根据小明的发现,若在该盒子中再放入除颜色外与原来的球完全相同的2个红球和2个白球,摇匀后从中任意摸出1个球为红球的概率为P’,请通过计算比较P与P'的大小.