题目内容

【题目】在学习三角形中位线的性质时,小亮对课本给出的解决办法进行了认真思考: 请你利用小亮的发现解决下列问题:
(1)如图1,AD是△ABC的中线,BE交AC于E,交AD于E,且AE=EF,求证:AC=BF. 请你帮助小亮写出辅助线作法并完成论证过程:

(2)解决问题:如图2,在△ABC中,∠B=45°,AB=10,BC=8,DE是△ABC的中位线,过点D、E作DF∥EG,分别交BC于F、G,过点A作MN∥BC,分别与FE、GE的延长线交于M、N,则四边形MFGN周长的最小值是

【答案】
(1)证明:如图1,延长AD至点M,使MD=FD,连接MC,

在△BDF和△CDM中,

∴△BDF≌△CDM(SAS).

∴MC=BF,∠M=∠BFM.

∵EA=EF,

∴∠EAF=∠EFA,

∵∠AFE=∠BFM,

∴∠M=∠MAC,

∴AC=MC,

∴BF=AC


(2)10 +8
【解析】(2)解:如图2,
∵MN∥BC,FM∥GN,
∴四边形MFGN是平行四边形,
∴MF=NG,MN=FG,
∵DE是△ABC的中位线,
∴DE= BC=4,DE∥BC,
∴MN=FG= BC=4,
∴四边形MFGN周长=2(MF+FG)=2MF+8,
∴MF⊥BC时,MF最短,
即:四边形MFGN的周长最小,
过点A作AH⊥BC于H,
∴FM=AH
在Rt△ABH中,∠B=45°,AB=10,
∴AH= =5
∴四边形MFGN的周长最小为2MF+8=10 +8.
所以答案是:10 +8.
【考点精析】根据题目的已知条件,利用三角形中位线定理的相关知识可以得到问题的答案,需要掌握连接三角形两边中点的线段叫做三角形的中位线;三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网