题目内容

【题目】如图,在△ABC中,AD是高,AE,BF是角平分线,它们相交于点G,AD与BF相交于点H,∠BAC=50°,∠C=70°,则∠AHB=

【答案】120°
【解析】解:∵在△ABC中,∠BAC=50°,∠C=70°, ∴∠ABC=60°,
∵在△ABC中,AD是高,AE,BF是角平线,
∴∠EAD=90°﹣(25°+60°)=5°,
∴∠AGH=25°+30°=55°,
∴∠AHB=180°﹣55°﹣5°=120°.
所以答案是:120°.
【考点精析】解答此题的关键在于理解三角形的“三线”的相关知识,掌握1、三角形角平分线的三条角平分线交于一点(交点在三角形内部,是三角形内切圆的圆心,称为内心);2、三角形中线的三条中线线交于一点(交点在三角形内部,是三角形的几何中心,称为中心);3、三角形的高线是顶点到对边的距离;注意:三角形的中线和角平分线都在三角形内,以及对三角形的内角和外角的理解,了解三角形的三个内角中,只可能有一个内角是直角或钝角;直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网