题目内容
【题目】如图,在□ABCD中,AD是⊙O的弦,BC是⊙O的切线,切点为B.
(1)求证:;
(2)若AB=5,AD=8,求⊙O的半径.
【答案】(1)证明见解析;(2)⊙O的半径为
【解析】
(1) 连接OB,根据题意求证OB⊥AD,利用垂径定理求证;
(2) 根据垂径定理和勾股定理求解.
解:(1)
连接OB,交AD于点E.
∵BC是⊙O的切线,切点为B,
∴OB⊥BC.
∴∠OBC=90°
∵ 四边形ABCD是平行四边形
∴AD// BC
∴∠OED=∠OBC =90°
∴ OE⊥AD
又 ∵ OE过圆心O
∴
(2)∵ OE⊥AD ,OE过圆心O
∴ AE=AD=4
在Rt△ABE中,∠AEB=90°,
BE==3,
设⊙O的半径为r,则OE=r-3
在Rt△ABE中,∠OEA=90°,
OE2+AE2 = OA2
即(r-3)2+42= r2 ∴r=
∴⊙O的半径为
练习册系列答案
相关题目
【题目】某射击队准备从甲、乙两名队员中选取一名队员代表该队参加比赛,特为甲、乙两名队员单行了一次选拔赛,要求这两名队员各射击10次,比赛结束后,根据比赛成绩情况,将甲,乙两名队员的比赛成绩制成了如下的统计图(表):
甲队员的成绩统计表:
成绩(单位:环) | 7 | 8 | 9 | 10 |
次数(单位:次) | 5 | 1 | 3 | 1 |
(1)在乙队员成绩扇形统计图中,求“8环”所在扇形的圆心角的度数;
(2)经过整理,得到的分析数据如表:
队员 | 平均数 | 中位数 | 众数 | 方差 |
甲 | 8 | 7.5 | 7 | c |
乙 | a | 8 | b | 1 |
求表中的a、b、c的值(3)根据甲、乙两名队员的成绩情况,该射击队准备选派乙参加比赛,请你写出一条射击队选派乙的理由.