题目内容
【题目】(本题8分)如图某幢大楼顶部有广告牌CD.张老师目高MA为1.60米,他站立在离大楼45米的A处测得大楼顶端点D的仰角为30°;接着他向大楼前进14米、站在点B处,测得广告牌顶端点C的仰角为45°.(取 ,计算结果保留一位小数)
(1)求这幢大楼的高DH;
(2)求这块广告牌CD的高度.
【答案】(1)27.6米;(2) 5.0米
【解析】试题分析:首先分析图形:根据题意构造直角三角形Rt△DME与Rt△CNE;应利用ME﹣NE=AB=14构造方程关系式,进而可解即可求出答案.
试题解析:解:(1)在Rt△DME中,ME=AH=45米;
由tan30°= ,得DE=45×=15×1.732=25.98米;
又因为EH=MA=1.6米,因而大楼DH=DE+EH=25.98+1.6=27.58≈27.6米;
(2)又在Rt△CNE中,NE=45﹣14=31米,由tan45°= ,得CE=NE=31米;
因而广告牌CD=CE﹣DE=31﹣25.98≈5.0米;
答:楼高DH为27.6米,广告牌CD的高度为5.0米.
练习册系列答案
相关题目