题目内容

【题目】如图,有一圆柱,其高为12cm,它的底面半径为3cm,在圆柱下底面A处有一只蚂蚁,它想得到上面B处的食物,则蚂蚁经过的最短距离为_________.(π取3)

【答案】15cm

【解析】本题应先把圆柱展开即得其平面展开图,则A,B所在的长方形的长为圆柱的高12cm,宽为底面圆周长的一半为πr,蚂蚁经过的最短距离为连接A,B的线段长,由勾股定理求得AB的长.

解:如图所示,

圆柱展开图为长方形,
则A,B所在的长方形的长为圆柱的高12cm,宽为底面圆周长的一半为πrcm,
蚂蚁经过的最短距离为连接A,B的线段长,
由勾股定理得AB===15cm
故蚂蚁经过的最短距离为15cm.(π取3)

“点睛”解答本题的关键是计算出圆柱展开后所得长方形长和宽的值,然后用勾股定理计算即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网