题目内容
有一个附有进水管和出水管的容器,在单位时间内的进水量和出水量分别一定.设从某时刻开始的5分钟内只进水不出水,在随后的15分钟内既进水又出水,得到容器内水量y(升)与时间x(分)之间的函数图象如图.若20分钟后只放水不进水,这时(x≧20时)y与x之间的函数关系式是______.(请注明自变量x的取值范围)
设5分钟内容器内水量y(升)与时间x (分)之间的函数解析式为y=kx+b,
把(0,0)(5,20)代入y1=kx+b,
解得k=4,b=0,
故5分钟内容器内水量y(升)与时间x (分)之间的函数解析式为y1=4x (0≤x≤5);
进水管每分钟进4L水;
设5到20分钟之间容器内水量y(升)与时间x (分)之间的函数解析式为y2=kx+b,
把(5,20)(20,35)代入y2=kx+b,
解得k=1,b=15,
故5到20分钟之间容器内水量y(升)与时间x (分)之间的函数解析式为y2=x+15 (5≤X≤20)
可知出水管每分钟出水3L;
20分钟后只放水不进水时函数解析式为y3=-3(x-20)+b,
将(20,35)代入y3=-3(x-20)+b,
解得b=35.
故当x≥20时,y与x之间的函数关系式是y=-3x+95.
故答案为:y=-3x+95(20≤x≤31
).
把(0,0)(5,20)代入y1=kx+b,
解得k=4,b=0,
故5分钟内容器内水量y(升)与时间x (分)之间的函数解析式为y1=4x (0≤x≤5);
进水管每分钟进4L水;
设5到20分钟之间容器内水量y(升)与时间x (分)之间的函数解析式为y2=kx+b,
把(5,20)(20,35)代入y2=kx+b,
解得k=1,b=15,
故5到20分钟之间容器内水量y(升)与时间x (分)之间的函数解析式为y2=x+15 (5≤X≤20)
可知出水管每分钟出水3L;
20分钟后只放水不进水时函数解析式为y3=-3(x-20)+b,
将(20,35)代入y3=-3(x-20)+b,
解得b=35.
故当x≥20时,y与x之间的函数关系式是y=-3x+95.
故答案为:y=-3x+95(20≤x≤31
2 |
3 |
练习册系列答案
相关题目