题目内容
【题目】设函数f(x)=|x2﹣2x﹣1|,若m>n>1,且f(m)=f(n),则mn的取值范围为( )
A.
B.
C.(1,3)
D.(1,3]
【答案】A
【解析】解:解方程x2﹣2x﹣1=0得x=1± , ∴当1﹣ <x<1+ 时,x2﹣2x﹣1<0,
当x<1﹣ 或x>1+ 时,x2﹣2x﹣1>0,
作出f(x)的函数图象如图所示:
∵m>n>1,且f(m)=f(n),
∴1<n<1 ,1+ <m<3.
f(n)=﹣n2+2n+1,f(m)=m2﹣2m﹣1,
∵f(m)=f(n),
∴m2﹣2m﹣1+n2﹣2n﹣1=0,即(m+n﹣1)2=2mn+3,
∵m+n>2 >1,
∴(m+n﹣1)2>(2 ﹣1)2=4mn﹣4 +1,
∴2mn+3>4mn﹣4 +1,解得0< <1+ ,
∴mn<3+2 ,
故选:A.
【考点精析】掌握函数的值和二次函数的性质是解答本题的根本,需要知道函数值的求法:①配方法(二次或四次);②“判别式法”;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法;当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减.
【题目】中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”,为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研,人社部从网上年龄在15~65岁的人群中随机调查100人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下
年龄 | [15,25) | [25,35) | [35,45) | [45,55) | [55,65] |
支持“延迟退休”的人数 | 15 | 5 | 15 | 28 | 17 |
(1)由以上统计数据填2×2列联表,并判断是否95%的把握认为以45岁为界点的不同人群对“延迟退休年龄政策”的支持有差异;
45岁以下 | 45岁以上 | 总计 | |
支持 | |||
不支持 | |||
总计 |
(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动,现从这8人中随机抽2人. ①抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率;
②记抽到45岁以上的人数为X,求随机变量X的分布列及数学期望.
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
.