题目内容
【题目】中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”,为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研,人社部从网上年龄在15~65岁的人群中随机调查100人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下
年龄 | [15,25) | [25,35) | [35,45) | [45,55) | [55,65] |
支持“延迟退休”的人数 | 15 | 5 | 15 | 28 | 17 |
(1)由以上统计数据填2×2列联表,并判断是否95%的把握认为以45岁为界点的不同人群对“延迟退休年龄政策”的支持有差异;
45岁以下 | 45岁以上 | 总计 | |
支持 | |||
不支持 | |||
总计 |
(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动,现从这8人中随机抽2人. ①抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率;
②记抽到45岁以上的人数为X,求随机变量X的分布列及数学期望.
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
.
【答案】
(1)解:由统计数据填2×2列联表如下,
45岁以下 | 45岁以上 | 总计 | |
支持 | 35 | 45 | 80 |
不支持 | 15 | 5 | 20 |
总计 | 50 | 50 | 100 |
计算观测值 ,
所以有95%的把握认为以45岁为分界点的不同人群对“延迟退休政策”的支持度有差异
(2)解:①抽到1人是45岁以下的概率 ,抽到1人是45岁以上的概率是 ,
故所求的概率是P= × = ;
②根据题意,X的可能取值是0,1,2;
计算P(X=0)= = ,
P(X=1)= = ,
P(X=2)= = ,
可得随机变量X的分布列为
X | 0 | 1 | 2 |
P |
故数学期望为E(X)=0× +1× +2× =
【解析】(1)由统计数据填写列联表,计算观测值,对照临界值得出结论;(2)①求抽到1人是45岁以下的概率,再求抽到1人是45岁以上的概率,②根据题意知X的可能取值,计算对应的概率值,写出随机变量X的分布列,计算数学期望值.