题目内容
【题目】如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=DC,连接EF并延长交BC的延长线于点G.
(1)求证:△ABE∽△DEF;
(2)若正方形的边长为4,求BG的长.
【答案】(1)见解析(2)10
【解析】
(1)利用正方形的性质,可得∠A=∠D,根据已知条件可知,根据两边对应成比例且夹角相等三角形相似,可得△ABE∽△DEF;(2)根据平行线分线段成比例定理,可得CG的长,即可求出BG的长.
(1)证明:∵四边形ABCD为正方形,
∴AD=AB=DC=BC, ∠A=∠D=90°,
∵AE=ED,
∴,
又∵DF=DC,∴
∴
∴△ABE∽△DEF;
(2)解:∵四边形ABCD为正方形,
ED∥BG,
∴
又∵DF=DC,正方形的边长为4,
∴ED=2,CG=6,
BG=BC+CG=10.
练习册系列答案
相关题目
【题目】为响应荆州市“创建全国文明城市”号召,某单位不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过18m,另外三边由36m长的栅栏围成.设矩形ABCD空地中,垂直于墙的边AB=xm,面积为ym2(如图).
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)若矩形空地的面积为160m2,求x的值;
(3)若该单位用8600元购买了甲、乙、丙三种绿色植物共400棵(每种植物的单价和每棵栽种的合理用地面积如下表).问丙种植物最多可以购买多少棵?此时,这批植物可以全部栽种到这块空地上吗?请说明理由.
甲 | 乙 | 丙 | |
单价(元/棵) | 14 | 16 | 28 |
合理用地(m2/棵) | 0.4 | 1 | 0.4 |