题目内容
【题目】在平面坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A2,作正方形A2B2C2C1,………按这样的规律进行下去,正方形A2018B2018C2018C2017的面积为( )
A. B. C. D.
【答案】C
【解析】试题分析:∵点A的坐标为(1,0),点D的坐标为(0,2),
∴OA=1,OD=2,
设正方形的面积分别为S1,S2…S2019,
在直角△ADO中,根据勾股定理,
得:AD==,
∴AB=AD=BC=,
∴正方形ABCD的面积为:S1=5;
∵∠DAO+∠ADO=90°,∠DAO+∠BAA1=90°,
∴∠ADO=∠BAA1,
∵∠AOD=∠ABA1=90°,
∴△AOD∽△ABA1,
∴,
即,
∴BA1=,
∴A1C=BC+ BA1=,
∴正方形A1B1C1C的面积为:S2=×5=5×,
根据题意,得:AD∥BC∥C1A2∥C2B2,
∴∠BAA1=∠B1A1A2=∠B2A2x,
∵∠ABA1=∠A1B1A2=90°,
∴△BAA1∽△B1A1A2,
∴,
∴A2B1==,
∴A2C1=B1C1+A2B1=+=,
∴正方形A2B2C2C1的面积为:S3=×5=5×,
由此可得:Sn=5×,
∴正方形A2018B2018C2018C2017的面积为S2019=5×=5×.
故选C.
练习册系列答案
相关题目