题目内容
【题目】如图,在中, , ,将绕点沿逆时针方向旋转得到.
(1)线段的长是 , 的度数是 ;
(2)连结,求证:四边形是平行四边形;
(3)求四边形的面积.
【答案】(1)6, 135度;(2)详见解析;(3)36.
【解析】试题分析:(1)图形在旋转过程中,边长和角的度数不变;
(2)可证明OA∥A1B1且相等,即可证明四边形OAA1B1是平行四边形;
(3)利用弧长公式求得点B划过的弧长即可.
试题解析:(1)解:因为,∠OAB=90°,OA=AB,
所以,△OAB为等腰直角三角形,即∠AOB=45°,
根据旋转的性质,对应点到旋转中心的距离相等,即OA1=OA=6,
对应角∠A1OB1=∠AOB=45°,旋转角∠AOA1=90°,
所以,∠AOB1的度数是90°+45°=135°.
(2)证明:∵∠AOA1=∠OA1B1=90°,
∴OA∥A1B1,
又OA=AB=A1B1,
∴四边形OAA1B1是平行四边形.
(3)36
练习册系列答案
相关题目
【题目】下表是中国电信两种“套餐”计费方式.(月基本费固定收,主叫不超过主叫时间,流量不超上网流量不再收取额外费用费,主叫超时和上网超流量部分加收超时费和超流量费)
月基本费/元 | 主叫通话/分钟 | 上网流量/MB | 接听 | 主叫超时(元/分钟) | 超出流量(元/MB) | |
套餐1 | 49 | 200 | 500 | 免费 | 0.20 | 0.3 |
套餐2 | 69 | 250 | 600 | 免费 | 0.15 | 0.2 |
(1)6月小王主叫通话时间220分钟,上网流量800MB.按套餐1计费需 元,按套餐2计费需 元;
若他按套餐2计费需129元,主叫通话时间为240分钟,则他上网使用了 MB流量;
(2)若上网流量为540MB,是否存在某主叫通话时间(分钟),按套餐1和套餐2的计费相等?若存在,请求出的值;若不存在,请说明理由.