题目内容
【题目】如图,点C在线段AB上,点M、N分别是AC、BC的中点.
若,求线段MN的长;
若C为线段AB上任一点,满足,其它条件不变,你能猜想MN的长度吗?并说明理由,你能用一句简洁的话描述你发现的结论吗?
若C在线段AB的延长线上,且满足cm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.
【答案】(1)MN=7cm;(2)MN=a;结论:当C为线段AB上一点,且M,N分别是AC,BC的中点,则有MN=AB;(3)MN=b.
【解析】
(1)由中点的定义可得MC、CN长,根据线段的和差关系即可得答案;(2)根据中点定义可得MC=AC,CN=BC,利用MN=MC+CN,,即可得结论,总结描述即可;(3)点在AB的延长线上时,根据M、N分别为AC、BC的中点,即可求出MN的长度.
(1)∵点M、N分别是AC、BC的中点,AC=8,CB=6,
∴MC=AC=4,CN=BC=3,
∴MN=MC+CN=7cm.
(2)∵点M、N分别是AC、BC的中点,
∴MC=AC,CN=BC,
∵AC+BC=AB=a,
∴MN=MC+CN=(AC+BC)=a.
综上可得结论:当C为线段AB上一点,且M,N分别是AC,BC的中点,则有MN=AB.
(3)如图:当点C在线段AB的延长线时,则AC>BC,
∵M是AC的中点,
∴CM=AC,
∵点N是BC的中点,
∴CN=BC,
∴MN=CM-CN=(AC-BC)=b.
【题目】如下图,将一张正方形纸片,剪成四个大小形状一样的小正方形,然后将其中的一个小正方形再按同样的方法剪成四个小正方形,再将其中的一个小正方形剪成四个小正方形,如此循环下去.
(1)填写下表:
剪的次数 | 1 | 2 | 3 | 4 | 5 |
正方形个数 | 4 | 7 | 10 |
|
|
(2)如果剪了8次,共剪出 个小正方形.
(3)如果剪n次,共剪出 个小正方形.
(4)设最初正方形纸片为1,则剪n次后,最小正方形的边长为 .