题目内容
【题目】已知二次函数y=x2-2mx+m2-1.
(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;
(2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标;
(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由.
【答案】(1)二次函数的解析式为:y=x2-2x或y=x2+2x;(2)C(0,3)、D(2,-1);(3)P(,0).
【解析】
试题分析:(1)根据二次函数的图象经过坐标原点O(0,0),直接代入求出m的值即可;
(2)根据m=2,代入求出二次函数解析式,进而利用配方法求出顶点坐标以及图象与y轴交点即可;
(3)根据当P、C、D共线时PC+PD最短,利用平行线分线段成比例定理得出PO的长即可得出答案.
试题解析:(1)∵二次函数的图象经过坐标原点O(0,0),
∴代入二次函数y=x2-2mx+m2-1,得出:m2-1=0,
解得:m=±1,
∴二次函数的解析式为:y=x2-2x或y=x2+2x;
(2)∵m=2,
∴二次函数y=x2-2mx+m2-1得:y=x2-4x+3=(x-2)2-1,
∴抛物线的顶点为:D(2,-1),
当x=0时,y=3,
∴C点坐标为:(0,3),
∴C(0,3)、D(2,-1);
(3)当P、C、D共线时PC+PD最短,
过点D作DE⊥y轴于点E,
∵PO∥DE,
∴,
∴,
解得:PO=,
∴PC+PD最短时,P点的坐标为:P(,0).
【题目】某公司为了更好治理污水质,改善环境,决定购买10台污水处理设备,现有A,B两种型号的设备,其中每台的价格,月处理污水量如表:
A型 | B型 | |
价格(万元/台) | a | b |
处理污水量(吨/月) | 200 | 160 |
经调查:购买一台A型设备比购买一台B型设备多3万元,购买2台A型设备比购买3台B型设备少1万元.
(1)求a,b的值;
(2)经预算:市治污公司购买污水处理设备的资金不超过78万元,你认为该公司有哪几种购买方案;
(3)在(2)间的条件下,若每月要求处理的污水量不低于1620吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.
【题目】如图,有下列四种结论:①AB=AD;②∠B=∠D;③∠BAC=∠DAC;④BC=DC.以其中的2个结论作为依据不能判定△ABC≌△ADC的是( )
A. ①② B. ①③ C. ①④ D. ②③
【题目】某市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表单位:环:
第1次 | 第2次 | 第3次 | 第4次 | 第5次 | 第6次 | |
甲 | 10 | 9 | 8 | 8 | 10 | 9 |
乙 | 10 | 10 | 8 | 10 | 7 | 9 |
根据表格中的数据,可计算出甲、乙两人的平均成绩都是9环.
(1)分别计算甲、乙六次测试成绩的方差;
(2)根据数据分析的知识,你认为选______名队员参赛.