题目内容
【题目】综合题 1、如图1,线段AB的端点在正方形网格的格点上,在图1中找到格点C,使组成的△ABC的一个内角α满足tanα=2(找到两个点C,全等的三角形算一种)
2、
(1)如图1,线段AB的端点在正方形网格的格点上,在图1中找到格点C,使组成的△ABC的一个内角α满足tanα=2(找到两个点C,全等的三角形算一种).
(2)如图2,在Rt△DEF中,∠DEF=90°,DE=1,sin∠F= .用两块全等的△DEF拼出一个平行四边形,将拼得的平行四边形画在图2网格(网格图中小正方形边长均为1)中,画出不同的两种平行四边形(全等的算一种),并写出相应的周长.
【答案】
(1)解:如图△ABC,△ABC′即为所求;
(2)解:有三种拼法:周长分别为8,2+2 ,6+2 .
【解析】(1)根据已知tanα=2,因此画出的直角三角形的两直角边存在2倍关系即可。
(2)先利用解直角三角形算出EF、DE的长,有三种拼法:分别以DE、DF、EF为所拼的平行四边形的对角线,再分别求出周长即可。
【考点精析】本题主要考查了平行四边形的性质和解直角三角形的相关知识点,需要掌握平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分;解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法)才能正确解答此题.
练习册系列答案
相关题目