题目内容
【题目】为了从甲、乙两名选手中选拔一人参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表:
甲、乙射击成绩统计表
平均数 | 中位数 | 方差 | 命中10环的次数 | |
甲 | 7 | |||
乙 | 1 |
(1)请补全上述图表(请直接在表中填空和补全折线图);
(2)如果规定成绩较稳定者胜出,你认为谁将胜出?说明你的理由;
(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么?
【答案】(1)见解析;(2)甲胜出;(3)见解析.
【解析】试题分析:(1)根据折线统计图列举出乙的成绩,计算出甲的中位数,方差,以及乙平均数,中位数及方差,补全即可;
(2)计算出甲乙两人的方差,比较大小即可做出判断;
(3)希望甲胜出,规则改为9环与10环的总数大的胜出,因为甲9环与10环的总数为4环.
试题解析:(1)如图所示.
甲、乙射击成绩统计表
平均数 | 中位数 | 方差 | 命中10环的次数 | |
甲 | 7 | 7 | 4 | 0 |
乙 | 7 | 7.5 | 5.4 | 1 |
(2)由甲的方差小于乙的方差,甲比较稳定,故甲胜出.
(3)如果希望乙胜出,应该制定的评判规则为:平均成绩高的胜出;如果平均成绩相同,则随着比赛的进行,发挥越来越好者或命中满环(10环)次数多者胜出.因为甲、乙的平均成绩相同,随着比赛的进行,乙的射击成绩越来越好(回答合理即可).
练习册系列答案
相关题目
【题目】甲、乙两台机床同时生产一种零件,在10天中,两台机床每天出次品的数量如下表:
甲 | 1 | 1 | 0 | 2 | 1 | 3 | 2 | 1 | 1 | 0 |
乙 | 0 | 2 | 2 | 0 | 3 | 1 | 0 | 1 | 3 | 1 |
(1)分别计算两组数据的平均数和方差;
(2)从计算的结果来看,在10天中,哪台机床出次品的平均数较小?哪台机床出次品的波动较小?