题目内容

【题目】观察下列各式:

13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2

13+23+33=36,而(1+2+3)2=36,∴13+23+33=(1+2+3)2

13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2

∴13+23+33+43+53=(______ )2= ______ .

根据以上规律填空:

(1)13+23+33+…+n3=(______ )2=[ ______ ]2

(2)猜想:113+123+133+143+153= ______ .

【答案】1+2+3+4+5;225;1+2+…+n;;11375

【解析】

观察题中的一系列等式发现,从1开始的连续正整数的立方和等于这几个连续正整数和的平方,根据此规律填空;(1)、根据上述规律填空,然后把1+2+…+n变为(n+1)相乘,即可化简;(2)、对所求的式子前面加上110的立方和,然后根据上述规律分别求出115的立方和与110的立方和,求出的两数相减即可求出值.

由题意可知:13+23+33+43+53=(1+2+3+4+5)2=225

(1)、∵1+2+…+n=(1+n)+[2+(n-1)]+…+[+(n-+1)]=

∴13+23+33+…+n3=(1+2+…+n)2=[]2

(2)、113+123+133+143+153=13+23+33+…+153-(13+23+33+…+103

=(1+2+…+15)2-(1+2+…+10)2 =1202-552=11375.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网