题目内容

【题目】如图,点O是线段AB上的一点,OA=OC,OD平分∠AOC交AC于点D,OF平分∠COB,CF⊥OF于点F.

(1)求证:四边形CDOF是矩形;
(2)当∠AOC多少度时,四边形CDOF是正方形?并说明理由.

【答案】
(1)证明:∵OD平分∠AOC,OF平分∠COB(已知),

∴∠AOC=2∠COD,∠COB=2∠COF。

∵∠AOC+∠BOC=180°,∴2∠COD+2∠COF=180°。∴∠COD+∠COF=90°。

∴∠DOF=90°。

∵OA=OC,OD平分∠AOC(已知)。

∴OD⊥AC,AD=DC(等腰三角形的“三合一”的性质)。∴∠CDO=90°。

∵CF⊥OF,∴∠CFO=90°。

∴四边形CDOF是矩形。


(2)解:当∠AOC=90°时,四边形CDOF是正方形。理由如下:

∵∠AOC=90°,AD=DC,∴OD=DC。

又由(1)知四边形CDOF是矩形,则四边形CDOF是正方形。

因此,当∠AOC=90°时,四边形CDOF是正方形。


【解析】(1)根据角平分线的定义得到∠DOF=90°,根据等腰三角形的性质三线合一,得到∠CDO=90°,再由CF⊥OF,得到四边形CDOF是矩形;(2)根据正方形的判定方法有一组临边相等的矩形是正方形,当∠AOC=90°时OD=DC,得到四边形CDOF是正方形.
【考点精析】本题主要考查了正方形的判定方法的相关知识点,需要掌握先判定一个四边形是矩形,再判定出有一组邻边相等;先判定一个四边形是菱形,再判定出有一个角是直角才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网