题目内容

已知:抛物线y=ax2+bx+c(a≠0)的对称轴为x=-1,与x轴交于A,B两点,与y轴交于点C,其中A(-3,0),C(0,-2)
(1)求这条抛物线的函数表达式;
(2)已知在对称轴上存在一点P,使得△PBC的周长最小.请求出点P的坐标;
(3)若点D是线段OC上的一个动点(不与点O、点C重合).过点D作DEPC交x轴于点E.连接PD、PE.设CD的长为m,△PDE的面积为S.求S与m之间的函数关系式.试说明S是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.
(1)由题意得
b
2a
=1
9a-3b+c=0
c=-2

解得
a=
2
3
b=
4
3
c=-2

∴此抛物线的解析式为y=
2
3
x2+
4
3
x-2.

(2)连接AC、BC.

因为BC的长度一定,
所以△PBC周长最小,就是使PC+PB最小.
B点关于对称轴的对称点是A点,AC与对称轴x=-1的交点即为所求的点P.
设直线AC的表达式为y=kx+b,
-3k+b=0
b=-2

解得
k=-
2
3
b=-2

∴此直线的表达式为y=-
2
3
x-2,
把x=-1代入得y=-
4
3

∴P点的坐标为(-1,-
4
3
).

(3)S存在最大值,
理由:∵DEPC,即DEAC.
∴△OED△OAC.
OD
OC
=
OE
OA
,即
2-m
2
=
OE
3

∴OE=3-
3
2
m,OA=3,AE=
3
2
m,
∴S=S△OAC-S△OED-S△AEP-S△PCD
=
1
2
×3×2-
1
2
×(3-
3
2
m)×(2-m)-
1
2
×
3
2
4
3
-
1
2
×m×1
=-
3
4
m2+
3
2
m=-
3
4
(m-1)2+
3
4

-
3
4
<0

∴当m=1时,S最大=
3
4
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网