题目内容

如图,⊙M的圆心在x轴上,与坐标轴交于A(0,
3
)、B(-1,0),抛物线y=-
3
3
x2+bx+c
经过A、B两点.
(1)求抛物线的函数解析式;
(2)设抛物线的顶点为P.试判断点P与⊙M的位置关系,并说明理由;
(3)若⊙M与y轴的另一交点为D,则由线段PA、线段PD及弧ABD围成的封闭图形PABD的面积是多少?
(1)将A(0,
3
)、B(-1,0)两点坐标代入抛物线y=-
3
3
x2+bx+c中,得
c=
3
-
3
3
-b+c=0

解得
b=
2
3
3
c=
3

∴y=-
3
3
x2+
2
3
3
x+
3


(2)连接MA,设⊙M的半径为R,根据A、B两点坐标可知,OA=
3
,OM=R-1
在Rt△OMA中,由勾股定理得,OA2+OM2=AM2
3
2+(R-1)2=R2
解得R=2,
∵y=-
3
3
x2+
2
3
3
x+
3
=-
3
3
(x-1)2+
4
3
3

∴PM=
4
3
3
>2,即P点在⊙M外;

(3)∵PMy轴,
∴S△APD=S△AMD
由线段PA、线段PD及弧ABD围成的封闭图形PABD的面积即为扇形AMD的面积,
∵OM=1,AM=2,
∴∠AMO=60°,∠AMD=120°
∴S扇形AMD=
120×π×22
360
=
3
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网