题目内容

如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.

(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.

(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.

①求证:BD⊥CF;
②当AB=4,AD=时,求线段FG的长.
(1) BD=CF成立,证明见解析;(2)①证明见解析;②FG=.

试题分析:(1)证明线段相等的常用方法是三角形的全等,直观上判 断BD=CF,而由题目条件,旋转过程中出
现了两个三角形△BAD和△CAF,并且包含了要证明相等的两条线段BD和CF,∵△ABC是等腰直角三角形,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,只差夹角相等,在Rt△BAC中,∠BAD+∠DAC=90°,∠CAF+∠DAC="90°," ∴∠BAD="∠CAF," ∴△BAD≌△CAF, BD=CF.(2)①要证明BD⊥CF,只要证明∠BGC=90°,即∠GBC+∠BCG=∠GBC+∠ACF+∠ACB=90°,在Rt△BAC中,∠ABC+
∠ACB=∠ABG+∠GBC+∠BCA=90°,有(1)知,∠ACF=∠ABG,所以∠GBC+∠ACF+∠ACB=∠GBC+
∠ABG +∠ACB =90°,所以BD⊥CF.②求线段的方法一般是三角形的全等和勾股定理,题目中没有和FG直接相关的线段,而CG从已知条件中又无法求出,所以需要作辅助线,连接FD,交AC于点N, 在正方形ADEF中,AD=DE=, AN="1," CN=3,由勾股定理CF=,设FG=x,CG=,在Rt△FGD中,∵FD=2,∴GD=,∵在Rt△BCG中,
,解之得FG=.
试题解析:②解法一:
如图,连接FD,交AC于点N,

∵在正方形ADEF中,AD=DE=,
∴AN=FN=AE=1,FD=2,
∵在等腰直角△ABC 中,AB=4,∴CN=AC-AN=3,
∴在Rt△FCN中,,
∵△BAD≌△CAF(已证),∴BD=CF=,
设FG=,在Rt△FGD中,∵FD=2,∴GD=,
∵CF=,∴CG=,
∵在等腰直角△ABC 中,AB=AC=4,
,
∵在Rt△BCG中,,
 , 
整理,得,
解之,得(不合题意,故舍去)
∴FG=.
解法二:
如图,连接FD,交AC于点N;连接CD,

同解法一,可得:DG=,CG=
易证△ACD≌△ABD(SAS),可得CD=BD=,  
在Rt△CGD中,,即
解之,得,故FG= .
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网