题目内容
如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230309516938481.png)
(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082303095170912429.png)
(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082303095174013045.png)
①求证:BD⊥CF;
②当AB=4,AD=
时,求线段FG的长.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230309516938481.png)
(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082303095170912429.png)
(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082303095174013045.png)
①求证:BD⊥CF;
②当AB=4,AD=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823030951756316.png)
(1) BD=CF成立,证明见解析;(2)①证明见解析;②FG=
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823030951771454.png)
试题分析:(1)证明线段相等的常用方法是三角形的全等,直观上判 断BD=CF,而由题目条件,旋转过程中出
现了两个三角形△BAD和△CAF,并且包含了要证明相等的两条线段BD和CF,∵△ABC是等腰直角三角形,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,只差夹角相等,在Rt△BAC中,∠BAD+∠DAC=90°,∠CAF+∠DAC="90°," ∴∠BAD="∠CAF," ∴△BAD≌△CAF, BD=CF.(2)①要证明BD⊥CF,只要证明∠BGC=90°,即∠GBC+∠BCG=∠GBC+∠ACF+∠ACB=90°,在Rt△BAC中,∠ABC+
∠ACB=∠ABG+∠GBC+∠BCA=90°,有(1)知,∠ACF=∠ABG,所以∠GBC+∠ACF+∠ACB=∠GBC+
∠ABG +∠ACB =90°,所以BD⊥CF.②求线段的方法一般是三角形的全等和勾股定理,题目中没有和FG直接相关的线段,而CG从已知条件中又无法求出,所以需要作辅助线,连接FD,交AC于点N, 在正方形ADEF中,AD=DE=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823030951787282.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823030951802352.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823030951818445.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823030951834490.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823030951849715.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230309518651189.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823030951771454.png)
试题解析:②解法一:
如图,连接FD,交AC于点N,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230309518962854.jpg)
∵在正方形ADEF中,AD=DE=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823030951787282.png)
∴AN=FN=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823030951912289.png)
∵在等腰直角△ABC 中,AB=4,∴CN=AC-AN=3,
∴在Rt△FCN中,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230309519271100.png)
∵△BAD≌△CAF(已证),∴BD=CF=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823030951802352.png)
设FG=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823030951958275.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823030951834490.png)
∵CF=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823030951802352.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823030951818445.png)
∵在等腰直角△ABC 中,AB=AC=4,
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823030952021976.png)
∵在Rt△BCG中,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823030951849715.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230309520521193.png)
整理,得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823030952068775.png)
解之,得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823030952083572.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823030952083688.png)
∴FG=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823030951771454.png)
解法二:
如图,连接FD,交AC于点N;连接CD,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230309521142965.jpg)
同解法一,可得:DG=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823030951834490.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823030951818445.png)
易证△ACD≌△ABD(SAS),可得CD=BD=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823030951802352.png)
在Rt△CGD中,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823030952177726.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230309521921000.png)
解之,得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823030952208538.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823030951771454.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目