题目内容
【题目】如图,在Rt△ABC中,∠C=90°,P是斜边上一定点,过点P作直线与一直角边交于点Q使图中出现两个相似三角形,这样的点Q有 ( )
A.1个
B.2个
C.3个
D.4个
【答案】C
【解析】过点M作直线与另一边相交,使所得的三角形与原三角形有一个公共角,只要再作一个直角就可以.
∵截得的三角形与△ABC相似,
∴过点M作AB的垂线,或作AC的垂线,或作BC的垂线,所得三角形满足题意
∴过点M作直线l共有三条,
故选C.
【考点精析】本题主要考查了相似三角形的判定的相关知识点,需要掌握相似三角形的判定方法:两角对应相等,两三角形相似(ASA);直角三角形被斜边上的高分成的两个直角三角形和原三角形相似; 两边对应成比例且夹角相等,两三角形相似(SAS);三边对应成比例,两三角形相似(SSS)才能正确解答此题.
练习册系列答案
相关题目