题目内容
【题目】如图,抛物线y=-x2+2x+3与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,
(1)将抛物线沿y轴向下平移t(t>0)个单位,当平移后的抛物线与线段OB有且只有一个交点时,则t的取值范围是.
(2)抛物线上存在点P,使∠BCP=∠BAC﹣∠ACO,则点P的坐标为 .
【答案】
(1)0<t<3或t=4
(2) , (-5,-32)
【解析】(1)解:由y=-x2+2x+3可得A(-1,0),B(3,0),C(0,3).对称轴为直线x=1,顶点为(1,4);
将抛物线沿y轴平移t(t>0)个单位,得y=-x2+2x+3-t,
当它与x轴的一个交点与O重合时,
则当x=0时,则3-t=0,t=3,此时与x轴的另外一个交点为(1,0),
与x轴的两个交点都在线段OB上,则t<3;
当它与x轴的一个交点与B重合时,
则当x=3时,则0-t=0,t=0,
此时与x轴的另外一个交点为(4,0),则t>0;
当它的顶点在x轴上时,与x轴只有一个交点,且顶点坐标为(1,0)符合题意,此时-1+2+3-t=0
解得t=4.
综上,0<t<3或t=4.
(2)取AC的中点M,过M作MN⊥AC交OC于N,连接AN
则AN=CN,
∴∠ACO=∠CAN
∵∠BCP=∠BAC-∠ACO,
∴∠BCP=∠BAC-∠CAN=∠NAO
∵∠ACO=∠NCM,∠AOC=∠CMN=90°,
∴△MCN∽△OCA,
∴ ,
∴CN====
∴NO=CO-CN=3-= ,
∴tan∠NAO==;
当点P在BC上方时,设为P1 , 过B作BD⊥BC交直线CP1于D,过D作DE⊥x轴于E,
∵∠OCB=∠DBE,∠BOC=∠BED=90°,
∴△BDE∽△CBO,
∴===tan∠BCP1=tan∠NAO=;
∴BE=CO=4,DE=BO=4,OE=3+4=7
∴D(7,4)
设直线CP1的解析式为y=k1x+3,把(7,4)代入
4=7k1+3,
∴k1= ,
∴y=x+3
令-x2+2x+3=x+3,
解得x1=0(舍去),x2=,
∴P1(,),
当点P在BC下方时,设为P2(m,n),
则∠BCP2=∠BCP1
延长DB交直线CP2于E,则点B是DE的中点,设E(a,b)
∴
解得
∴E(-1,-4)
设直线CP2的解析式为y=k2x+3,把(-1,-4)代入-4=-k2+3,
∴k2=7,
∴y=7x+3
令-x2+2x+3=7x+3,
解得x1=0(舍去),x2=-5
∴P2(-5,-32)
综上所述,抛物线上存在点P,使∠BCP=∠BAC-∠ACO,
P点坐标为(,)或(-5,-32).
所以答案是0<t<3或t=4;(,)或(-5,-32).
【考点精析】关于本题考查的二次函数的图象和二次函数图象的平移,需要了解二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;平移步骤:(1)配方 y=a(x-h)2+k,确定顶点(h,k)(2)对x轴左加右减;对y轴上加下减才能得出正确答案.
【题目】目前,我国大约有1.3亿高血压病患者,占15岁以上总人口数的10%﹣15%,预防高血压不容忽视。“千帕kpa”和“毫米汞柱mmHg”都是表示血压的单位,前者是法定的国际计量单位,而后者则是过去一直广泛使用的惯用单位。请你根据下表所提供的信息,判断下列各组换算不正确的是( )
千帕kpa | 10 | 12 | 16 | … |
毫米汞柱mmHg | 75 | 90 | 120 | … |
A.18kpa=135mmHg
B.21kpa=150mmHg
C.8kpa=60mmHg
D.32kpa=240mmHg