题目内容
【题目】如图,点,是上的定点,点为优弧上的动点(不与点,重合),在点运动的过程中,以下结论正确的是( )
A.的大小改变B.点到弦所在直线的距离存在最大值
C.线段与的长度之和不变D.图中阴影部分的面积不变
【答案】B
【解析】
根据圆周角定理,点到直线的距离的定义、极限思想和三角形三边关系、三角形面积公式等进行逐一判断即可.
解:A、因为点,是上的定点,所以所对的圆周角的大小不变,故A错误;
B、连接PO,当PO⊥AB时,此时点到弦所在直线的距离最大,故B正确;
C、当点P无限接近点B时,线段与的长度之和无限接近AB,而当点P从点B向点A移动过程中,线段与的长度之和发生变化,故C错误;
D、阴影部分面积分为弓形AB面积和△ABP面积之和,弓形面积不变,而点P到AB距离不一定,所以△ABP面积非定值,故阴影部分面积随着点P的移动发生变化,故D选项错误;
故选:B.
【题目】小腾的爸爸计划将一笔资金用于不超过10天的短期投资,针对这笔资金,银行专属客户经理提供了三种投资方案,这三种方案的回报如下:
方案一:每一天回报30元;
方案二:第一天回报8元,以后每一天比前一天多回报8元;
方案三:第一天回报0.5元,以后每一天的回报是前一天的2倍.
下面是小腾帮助爸爸选择方案的探究过程,请补充完整:
(1)确定不同天数所得回报金额(不足一天按一天计算),如下表:
天数 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
方案一 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 |
方案二 | 8 | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72 | 80 |
方案三 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 |
其中________;
(2)计算累计回报金额,设投资天数为(单位:天),所得累计回报金额是(单位:元),于是得到三种方案的累计回报金额,,与投资天数的几组对应值:
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
30 | 60 | 90 | 120 | 150 | 180 | 210 | 240 | 270 | 300 | |
8 | 24 | 48 | 80 | 120 | 168 | 224 | 288 | 360 | 440 | |
0.5 | 1.5 | 3.5 | 7.5 | 15.5 | 31.5 | 63.5 | 127.5 | 255.5 |
其中________;
(3)在同一平面直角坐标系中,描出补全后的表中各组数值所对应的点,,,并画出,,的图象;
注:为了便于分析,用虚线连接离散的点.
(4)结合图象,小腾给出了依据不同的天数而选择对应方案的建议:
_________________________________________________________________________
【题目】某校七年级有学生400人,为了解这个年级普及安全教育的情况,随机抽取了20名学生,进行安全教育考试,测试成绩(百分制)如下:
71 94 87 92 55 94 98 78 86 94
62 99 94 51 88 97 94 98 85 91
(1)请补全七年级20名学生安全教育测试成绩频数分布直方图;
(2)样本数据的平均数、中位数、众数、优秀率如下表所示,请补充完整;
年级 | 平均数 | 中位数 | 众数 | 优秀率 |
七年级 | 85.4 |
|
|
(3)估计七年级成绩优秀的学生人数约为_________人.
(4)学校有安全教育老师男女各2名,现从这4名老师中随机挑选2名参加“安全教育”宣传活动,请用树状图法或列表法求出恰好选中“1男1女”的概率.