题目内容

如图,直线y=kx+b,与抛物线y=ax2交于A(1,m),B(-2,4)+y轴交与点C.
(1)求抛物线的解析式;
(2)求S△AOB
(3)求
BC
AC
的值;
(4)判断点A是否在以BO为直径的圆上?并说明理由.
(1)∵抛物线y=ax2经过点B(-2,4),
∴4a=4,
∴a=1,
∴抛物线的解析式为y=x2

(2)把点A(1,m)代入y=x2得m=1,
∴点A的坐标为(1,1),
如图,过点A作AE⊥x轴于E,过点B作BF⊥x轴于F,
S△AOB=S梯形ABFE-S△AOE-S△BOF
=
1
2
×(1+4)×(1+2)-
1
2
×1×1-
1
2
×2×4,
=
15
2
-
1
2
-4,
=3;

(3)∵AE⊥x轴,BF⊥x轴,OC⊥x轴,
∴AEBFOC,
BC
AC
=
OF
OE
=2;

(4)∵直线y=kx+b经过A(1,1),B(-2,4),
k+b=1
-2k+b=4

解得
k=-1
b=2

∴直线AB的解析式为y=-x+2,
∵直线AB与y轴交与点C,
∴∠ACO=45°,
∵点A(1,1),
∴∠AOC=45°,
∴∠OAC=180°-45°-45°=90°,
∴点A在以BO为直径的圆上.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网