题目内容

【题目】如图,AB是⊙O的直径,OD⊥弦BC于点F,交⊙O于点E,连结CE、AE、CD,若∠AEC=∠ODC.

(1)求证:直线CD为⊙O的切线;
(2)若AB=5,BC=4,求线段CD的长.

【答案】
(1)证明:连接OC,

∵∠CEA=∠CBA,∠AEC=∠ODC,

∴∠CBA=∠ODC,

又∵∠CFD=∠BFO,

∴∠DCB=∠BOF,

∵CO=BO,

∴∠OCF=∠B,

∵∠B+∠BOF=90°,

∴∠OCF+∠DCB=90°,

∴直线CD为⊙O的切线


(2)解:连接AC,

∵AB是⊙O的直径,

∴∠ACB=90°,

∴∠DCO=∠ACB,

又∵∠D=∠B

∴△OCD∽△ACB,

∵∠ACB=90°,AB=5,BC=4,

∴AC=3,

=

=

解得;DC=


【解析】(1)利用圆周角定理结合等腰三角形的性质得出∠OCF+∠DCB=90°,即可得出答案;(2)利用圆周角定理得出∠ACB=90°,利用相似三角形的判定与性质得出DC的长.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网