题目内容

已知:如图,AB是⊙O的直径,AD是弦,OC垂直AD于F交⊙O于E,连接DE、BE,且∠C=∠BED.
(1)求证:AC是⊙O的切线;
(2)若OA=10,AD=16,求AC的长.
(1)证明:∵∠BED=∠BAD,∠C=∠BED,
∴∠BAD=∠C.(1分)
∵OC⊥AD于点F,
∴∠BAD+∠AOC=90°.(2分)
∴∠C+∠AOC=90°.
∴∠OAC=90°.
∴OA⊥AC.
∴AC是⊙O的切线.(4分)

(2)∵OC⊥AD于点F,
∴AF=
1
2
AD=8.(5分)
在Rt△OAF中,OF=
OA2-AF2
=6,(6分)
∵∠AOF=∠AOC,∠OAF=∠C,
∴△OAF△OCA.(7分)
OA
OC
=
OF
OA

即OC=
OA2
OF
=
100
6
=
50
3
.(8分)
在Rt△OAC中,AC=
OC2-OA2
=
40
3
.(10分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网