题目内容
【题目】如图,在等边△ABC中,AB=15,BD=6,BE=3,点P从点E出发沿EA方向运动,连结PD,以PD为边,在PD右侧按如图方式作等边△DPF,当点P从点E运动到点A时,点F运动的路径长是( )
A.8B.10C.D.12
【答案】D
【解析】
首先利用等边三角形的性质和含30°直角三角形的运用,判定△DPE≌△FDH,△DF2Q≌△ADE,然后利用全等三角形的性质,得出点F运动的路径长.
∵△ABC为等边三角形,
∴∠B=60°,
过D点作DE′⊥AB,过点F作FH⊥BC于H,如图所示:
则BE′=BD=3,
∴点E′与点E重合,
∴∠BDE=30°,DE=BE=3,
∵△DPF为等边三角形,
∴∠PDF=60°,DP=DF,
∴∠EDP+∠HDF=90°
∵∠HDF+∠DFH=90°,
∴∠EDP=∠DFH,
在△DPE和△FDH中,,
∴△DPE≌△FDH(AAS),
∴FH=DE=3,
∴点P从点E运动到点A时,点F运动的路径为一条线段,此线段到BC的距离为3,
当点P在E点时,作等边三角形DEF1,∠BDF1=30°+60°=90°,则DF1⊥BC,
当点P在A点时,作等边三角形DAF2,作F2Q⊥BC于Q,则四边形DF1F2Q是矩形,
∵∠BDE=30°,∠ADF2=60°,
∴∠ADE+∠F2DQ=180°﹣30°﹣60°=90°,
∵∠ADE+∠DAE=90°,
∴∠F2DQ=∠DAE,
在△DF2Q和△ADE中,,
∴△DF2Q≌△ADE(AAS),
∴DQ=AE=AB﹣BE=15﹣3=12,
∴F1F2=DQ=12,
∴当点P从点E运动到点A时,点F运动的路径长为12,
故选:D.
【题目】我区浙江中国花木城组织10辆汽车装运完A、B、C三种不同品质的苗木共100吨到外地销售,按计划10辆汽车都要装满,且每辆汽车只能装同一种苗木,由信息解答以下问题:
苗 木 品 种 | A | B | C |
每辆汽车运载量(吨) | 12 | 10 | 8 |
每吨苗木获利(万元) | 3 | 4 | 2 |
(1)设装A种苗木车辆数为x,装运B种苗木的车辆数为y,求y与x之间的函数关系式;
(2)若装运每种苗木的车辆都不少于2辆,则车辆安排方案有几种?写出每种安排方案
(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润.