题目内容
【题目】设A= ,B=
(1)求A与B的差;
(2)若A与B的值相等,求x的值.
【答案】
(1)解:A﹣B=
=
=
=
(2)解:∵A=B
∴
去分母,得2(x+1)=x
去括号,得2x+2=x
移项、合并同类项,得x=﹣2
经检验x=2是原方程的解
【解析】(1)首先通分,然后利用同分母的分式的加减法则求解;(2)根据A和B两个式子的值相等,即可列方程求解.
【考点精析】本题主要考查了分式的加减法和去分母法的相关知识点,需要掌握分式的加减法分为同分母的加减法和异分母的加减法.而异分母的加减法是通过"通分"转化为同分母的加减法进行运算的;先约后乘公分母,整式方程转化出.特殊情况可换元,去掉分母是出路.求得解后要验根,原留增舍别含糊才能正确解答此题.
【题目】抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y | … | 0 | 4 | 6 | 6 | 4 | … |
从上表可知,下列说法中,错误的是( )
A.抛物线于x轴的一个交点坐标为(﹣2,0)
B.抛物线与y轴的交点坐标为(0,6)
C.抛物线的对称轴是直线x=0
D.抛物线在对称轴左侧部分是上升的
【题目】如图,在左边托盘A(固定)中放置一个重物,在右边托盘B(可左右移动)中放置一定质量的砝码,可使得仪器左右平衡,改变托盘B与支撑点M的距离,记录相应的托盘B中的砝码质量,得到下表:
托盘B与点O的距离x(cm) | 10 | 15 | 20 | 25 | 30 |
托盘B中的砝码质量y(g) | 30 | 20 | 15 | 12 | 10 |
(1)把上表中(x,y)的各组对应值作为点的坐标,在如图所示的平面直角坐标系中描出其余的点,并用一条光滑曲线连接起来;观察所画的图像,猜测y与x之间的函数关系,求出该函数解析式;
(2)当托盘B向左移动(不超过点M)时,应往托盘B中添加砝码还是减少砝码?