题目内容
【题目】如图,AB是⊙O的直径,CD切⊙O于点C,AD交⊙O于点E,AC平分∠BAD,连接BE.
(1)求证:CD⊥ED;
(2)若CD=4,AE=2,求⊙O的半径.
【答案】(Ⅰ)见解析;(Ⅱ)⊙O的半径为.
【解析】
(Ⅰ)连接OC,根据CD切⊙O于点C得出OC⊥DC,由OA=OC,得出∠OAC=∠OCA,则可证明∠OCA=∠DAC,证得OC∥AD,根据平行线的性质即可证明;
(Ⅱ)根据圆周角定理证得∠AEB=90°,根据垂径定理证得EF=BF,进而证得四边形EFCD是矩形,从而证得BE=8,然后根据勾股定理求得AB,即可求得半径.
解:(Ⅰ)证明:连接OC,交BE于F,由DC是切线得OC⊥DC;
又∵OA=OC,
∴∠OAC=∠OCA,
∵AC平分∠BAD,
∴∠DAC=∠OAC.
∴∠OCA=∠DAC,
∴OC∥AD,
∴∠D=∠OCD=90°
即CD⊥ED.
(Ⅱ)∵AB是⊙O的直径,∴∠AEB=90°,
∵∠D=90°,∴∠AEB=∠D,
∴BE∥CD,
∵OC⊥CD,∴OC⊥BE,
∴EF=BF,
∵OC∥ED,
∴四边形EFCD是矩形,
∴EF=CD=4,∴BE=8,
∵AE=2,
∴AB===2
∴⊙O的半径为.
练习册系列答案
相关题目
【题目】随着信息技术的快速发展,“互联网+”渗透到我们日常生活的各个领域,网上在线学习交流已不再是梦,现有某教学网站策划了A,B两种上网学习的月收费方式:
收费方式 | 月使用费/元 | 包时上网时间/h | 超时费/(元/min) |
A | 7 | 25 | 0.01 |
B | m | n | 0.01 |
设每月上网学习时间为x小时,方案A,B的收费金额分别为yA,yB.
(1)如图是yB与x之间函数关系的图象,请根据图象填空:m= ;n=
(2)写出yA与x之间的函数关系式.
(3)选择哪种方式上网学习合算,为什么?