题目内容
【题目】【现场学习】
定义:我们把绝对值符号内含有未知数的方程叫做“含有绝对值的方程”.
如:|x|=2,|2x﹣1|=3,||﹣x=1,…都是含有绝对值的方程.
怎样求含有绝对值的方程的解呢?基本思路是:含有绝对值的方程→不含有绝对值的方程.
我们知道,根据绝对值的意义,由|x|=2,可得x=2或x=﹣2.
[例]解方程:|2x﹣1|=3.
我们只要把2x﹣1看成一个整体就可以根据绝对值的意义进一步解决问题.
解:根据绝对值的意义,得2x﹣1=3或2x﹣1= .
解这两个一元一次方程,得x=2或x=﹣1.
检验:
(1)当x=2时,
原方程的左边=|2x﹣1|=|2×2﹣1|=3,
原方程的右边=3,
∵左边=右边
∴x=2是原方程的解.
(2)当x=﹣1时,
原方程的左边=|2x﹣1|=|2×(﹣1)﹣1|=3,
原方程的右边=3,
∵左边=右边
∴x=﹣1是原方程的解.
综合(1)(2)可知,原方程的解是:x=2,x=﹣1.
【解决问题】
解方程:||﹣x=1.
【答案】原方程的解是:x=﹣.
【解析】
试题分析:根据去绝对值符号解决方程的问题,通过去绝对值符号将方程变成我们熟悉的一元一次方程,再通过检验的方法验证方程的解是否正确.
解:原方程变形为:||=x+1,
根据绝对值的意义,得=1+x或=﹣(1+x),
解得:x=﹣3或 x=﹣,
经检验:x=﹣3不是原方程的解,x=﹣是原方程的解,
所以,原方程的解是:x=﹣.
【题目】南方A市欲将一批容易变质的水果运往B市销售,若有飞机、火车、汽车三种运输方式,现只选择其中一种,这三种运输方式的主要参考数据如下表所示:
运输工具 | 途中速度(km/h) | 途中费用(元/km) | 装卸费用(元) | 装卸时间 |
飞机 | 200 | 16 | 1000 | 2 |
火车 | 100 | 4 | 2000 | 4 |
汽车 | 50 | 8 | 1000 | 2 |
若这批水果在运输(包括装卸)过程中的损耗为200元/h,记A、B两市间的距离为xkm.
(1)如果用W1、W2、W3分别表示使用飞机、火车、汽车运输时的总支出费用(包括损耗),求W1、W2、W3与x间的关系式;
(2)当x=250时,应采用哪种运输方式,才使运输时的总支出费用最小?