题目内容
【题目】如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.
(1)求证:CD2=CACB;
(2)求证:CD是⊙O的切线;
(3)过点B作⊙O的切线交CD的延长线于点E,若BC=12,tan∠CDA= ,求BE的长.
【答案】
(1)解:证明:∵∠CDA=∠CBD,∠C=∠C,
∴△ADC∽△DBC,
∴ = ,即CD2=CACB;
(2)解:证明:如图,连接OD.
∵AB是⊙O的直径,
∴∠ADB=90°,
∴∠1+∠3=90°.
∵OA=OD,
∴∠2=∠3,
∴∠1+∠2=90°.
又∠CDA=∠CBD,即∠4=∠1,
∴∠4+∠2=90°,即∠CDO=90°,
∴OD⊥CD.
又∵OD是⊙O的半径,
∴CD是⊙O的切线;
(3)解:解:如图,连接OE.
∵EB、CD均为⊙O的切线,
∴ED=EB,OE⊥DB,
∴∠ABD+∠DBE=90°,∠OEB+∠DBE=90°,
∴∠ABD=∠OEB,
∴∠CDA=∠OEB.
而tan∠CDA= ,
∴tan∠OEB= = ,
∵∠ODC=∠EBC=90°,∠C=∠C,
∴Rt△CDO∽Rt△CBE,
∴ = = = ,
∴CD=8,
在Rt△CBE中,设BE=x,
∴(x+8)2=x2+122,
解得x=5.
即BE的长为5.
【解析】(1)通过相似三角形(△ADC∽△DBC)的对应边成比例来证得结论;(2)如图,连接OD.欲证明CD是⊙O的切线,只需证明OD⊥CD即可;(3)通过相似三角形△EBC∽△ODC的对应边成比例列出关于BE的方程,通过解方程来求线段BE的长度即可.
【考点精析】关于本题考查的切线的判定定理和相似三角形的判定与性质,需要了解切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方才能得出正确答案.