题目内容
【题目】已知:△ABC内接于⊙O,D是 上一点,OD⊥BC,垂足为H.
(1)如图1,当圆心O在AB边上时,求证:AC=2OH;
(2)如图2,当圆心O在△ABC外部时,连接AD、CD,AD与BC交于点P,求证:∠ACD=∠APB;
(3)在(2)的条件下,如图3,连接BD,E为⊙O上一点,连接DE交BC于点Q、交AB于点N,连接OE,BF为⊙O的弦,BF⊥OE于点R交DE于点G,若∠ACD﹣∠ABD=2∠BDN,AC=5 ,BN=3 ,tan∠ABC= ,求BF的长.
【答案】
(1)解:∵OD⊥BC,
∴由垂径定理可知:点H是BC的中点,
∵点O是AB的中点,
∴OH是△ABC的中位线,
∴AC=2OH;
(2)解:∵OD⊥BC,
∴由垂径定理可知: ,
∴∠BAD=∠CAD,
∵ ,
∴∠ABC=∠ADC,
∴180°﹣∠BAD﹣∠ABC=180°﹣∠CAD﹣∠ADC,
∴∠ACD=∠APB,
(3)解:连接AO延长交于⊙O于点I,连接IC,AB与OD相交于点M,
∵∠ACD﹣∠ABD=2∠BDN,
∴∠ACD﹣∠BDN=∠ABD+∠BDN,
∵∠ABD+∠BDN=∠AND,
∴∠ACD﹣∠BDN=∠AND,
∵∠ACD+∠ABD=180°,
∴∠ABD+∠BDN=180°﹣∠AND,
∴∠AND=180°﹣∠AND,
∴∠AND=90°,
∵tan∠ABC= ,BN=3 ,
∴NQ= ,
∴由勾股定理可求得:BQ= ,
∵∠BNQ=∠QHD=90°,
∴∠ABC=∠QDH,
∵OE=OD,
∴∠OED=∠QDH,
∵∠ERG=90°,
∴∠OED=∠GBN,
∴∠GBN=∠ABC,
∵AB⊥ED,
∴BG=BQ= ,GN=NQ= ,
∵AI是⊙O直径,
∴∠ACI=90°,
∵tan∠AIC=tan∠ABC= ,
∴ = ,
∴IC=10 ,
∴由勾股定理可求得:AI=25,
连接OB,
设QH=x,
∵tan∠ABC=tan∠ODE= ,
∴ ,
∴HD=2x,
∴OH=OD﹣HD= ﹣2x,
BH=BQ+QH= +x,
由勾股定理可得:OB2=BH2+OH2,
∴( )2=( +x)2+( ﹣2x)2,
解得:x= 或x= ,
当QH= 时,
∴QD= QH= ,
∴ND=QD+NQ=6 ,
∴MN=3 ,MD=15
∵MD> ,
∴QH= 不符合题意,舍去,
当QH= 时,
∴QD= QH=
∴ND=NQ+QD=4 ,
由垂径定理可求得:ED=10 ,
∴GD=GN+ND=
∴EG=ED﹣GD= ,
∵tan∠OED= ,
∴ ,
∴EG= RG,
∴RG= ,
∴BR=RG+BG=12
∴由垂径定理可知:BF=2BR=24.
【解析】(1)OD⊥BC可知点H是BC的中点,又中位线的性质可得AC=2OH;(2)由垂径定理可知: ,所以∠BAD=∠CAD,由因为∠ABC=∠ADC,所以∠ACD=∠APB;(3)由∠ACD﹣∠ABD=2∠BDN可知∠AND=90°,由tan∠ABC= 可知NQ和BQ的长度,再由BF⊥OE和OD⊥BC可知∠GBN=∠ABC,所以BG=BQ,连接AO并延长交⊙O于点I,连接IC后利用圆周角定理可求得IC和AI的长度,设QH=x,利用勾股定理可求出QH和HD的长度,利用垂径定理可求得ED的长度,最后利用tan∠OED= 即可求得RG的长度,最后由垂径定理可求得BF的长度.
【题目】某花木公司在20天内销售一批马蹄莲.其中,该公司的鲜花批发部日销售量y1(万朵)与时间x(x为整数,单位:天)部分对应值如下表所示.
时间x(天) | 0 | 4 | 8 | 12 | 16 | 20 |
销量y1(万朵) | 0 | 16 | 24 | 24 | 16 | 0 |
另一部分鲜花在淘宝网销售,网上销售日销售量y2(万朵)与时间x(x为整数,单位:天) 关系如图所示.
(1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数能表示y1与x的变化规律,写出y1与x的函数关系式及自变量x的取值范围;
(2)观察马蹄莲网上销售量y2与时间x的变化规律,请你设想商家采用了何种销售策略使得销售量发生了变化,并写出销售量y2与x的函数关系式及自变量x的取值范围;
(3)设该花木公司日销售总量为y万朵,写出y与时间x的函数关系式,并判断第几天日销售总量y最大,并求出此时最大值.