题目内容

如图,线段与⊙O相切于点,连结交⊙O于点D,已知OA=OB=6cm,AB=cm.
求:(1)⊙O的半径;
(2)图中阴影部分的面积.
(1)3;(2)-

试题分析:(1)线段AB与⊙O相切于点C,则可以连接OC,得到OC⊥AB,则OC是等腰三角形OAB底边上的高线,根据三线合一定理,得到AC=3,在直角△OAC中根据勾股定理得到半径OC的长;
(2)图中阴影部分的面积等于△OAB的面积与扇形OCD的面积的差的一半.
(1)连接OC,则OC⊥AB.
∵OA=OB,
∴AC=BC=AB=×6=3
在Rt△AOC中,OC=
∴⊙O的半径为3.
(2)∵OC=OB,
∴∠B=30°,∠COD=60°
∴扇形OCD的面积为S扇形OCD=
∴阴影部分的面积为S阴影=SRtOBC-S扇形OCD=OC•CB-=-
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网