题目内容

【题目】如图,已知E、F分别是ABCD的边BC、AD上的点,且BE=DF.

(1)求证:四边形AECF是平行四边形;
(2)若四边形AECF是菱形,且BC=10,∠BAC=90°,求BE的长.

【答案】
(1)证明:∵四边形ABCD是平行四边形,

∴AD∥BC,且AD=BC,

∴AF∥EC,

∵BE=DF,

∴AF=EC,

∴四边形AECF是平行四边形


(2)解:∵四边形AECF是菱形,

∴AE=EC,

∴∠1=∠2,

∵∠BAC=90°,

∴∠3=90°﹣∠2,∠4=90°﹣∠1,

∴∠3=∠4,

∴AE=BE,

∴BE=AE=CE= BC=5.


【解析】(1)利用平行四边形的性质得出AF∥EC,进而得出AF=EC,进而求出即可;(2)利用菱形的性质以及三角形内角和定理得出∠1=∠2,进而求出∠3=∠4,再利用直角三角形的性质得出答案.
【考点精析】认真审题,首先需要了解平行四边形的判定与性质(若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积),还要掌握菱形的性质(菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半)的相关知识才是答题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网