题目内容
【题目】在矩形ABCD中,AB=6,AD=10,点E是边BC的中点,连接AE,若将△ABE沿AE翻折,点B落在点F处,连接FC,则tan∠BCF= .
【答案】
【解析】解:∵BC=AD=10,点E是BC的中点, ∴EC=BE=5,
由翻折变换的性质可知,BE=FE,∠BEA=∠FEA,
∴EF=EC,
∴∠EFC=∠ECF,
∵∠BEA+∠FEA=∠EFC+∠ECF,
∴∠BEA=∠BCF,
∵tan∠BEA= = ,
∴tan∠BCF= ,
所以答案是: .
【考点精析】掌握矩形的性质和翻折变换(折叠问题)是解答本题的根本,需要知道矩形的四个角都是直角,矩形的对角线相等;折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等.
练习册系列答案
相关题目