题目内容
【题目】数学课上,王老师让同学们对给定的正方形,建立合适的平面直角坐标系,并表示出各顶点的坐标.下面是4名同学表示各顶点坐标的结果:
甲同学:,,,;
乙同学:,,,;
丙同学:,,,;
丁同学:,,,;
上述四名同学表示的结果中,四个点的坐标都表示正确的同学是__________.
【答案】甲、丙、丁
【解析】
根据A、B两点坐标,构建直角坐标系,然后验证C、D两点是否正确即可
甲同学,以点B为坐标原点,1作为正方形的边长,坐标轴图下图:
则A(0,1),C(1,0),D(1,1),甲同学正确;
乙同学,以点A为坐标原点,1作为正方形边长
则:B(0,-1),C(1,-1),D(1,0),乙同学错误;
丙同学,以点B为坐标原点,3作为正方形的边长,
则A(0,3),C(3,0),D(3,3),丙同学正确;
丁同学,3作为正方形边长,以点A下方距离1、左方距离1的位置为原点,
则,,,,丁正确
故答案为:甲、丙、丁
【题目】(问题)若a+b=10,则ab的最大值是多少?
(探究)
探究一:当a﹣b=0时,求ab值.
显然此时,a=b=5,则ab=5×5=25
探究二:当a﹣b=±1时,求ab值.
①a﹣b=1,则a=b+1,
由已知得b+1+b=10
解得 b=,
a=b+l=+1=
则ab==
②a﹣b=﹣1,即b﹣a=1,由①可得,b= ,a=
则ab==.
探究三:当a﹣b=±2时,求ab值(仿照上述方法,写出探究过程).
探究四:完成下表:
a﹣b | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … |
ab | … |
|
| 25 |
|
| … |
(结论)若a+b=10,则ab的最大值是 (观察上面表格,直接写出结果).
(拓展)若a+b=m,则ab的最大值是 .
(应用)用一根长为12m的铁丝围成一个长方形,这个长方形面积的最大值是 m2.
【题目】为了调查学生对垃圾分类及投放知识的了解情况,从甲、乙两校各随机抽取40名学生进行了相关知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行了整理、描述和分析.下面给出了部分信息.
a.甲、乙两校40名学生成绩的频数分布统计表如下:
成绩x 学校 | |||||
甲 | 4 | 11 | 13 | 10 | 2 |
乙 | 6 | 3 | 15 | 14 | 2 |
(说明:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以下为不合格)
b.甲校成绩在这一组的是:
70 70 70 71 72 73 73 73 74 75 76 77 78
c.甲、乙两校成绩的平均分、中位数、众数如下:
学校 | 平均分 | 中位数 | 众数 |
甲 | 74.2 | n | 5 |
乙 | 73.5 | 76 | 84 |
根据以上信息,回答下列问题:
(1)写出表中n的值;
(2)在此次测试中,某学生的成绩是74分,在他所属学校排在前20名,由表中数据可知该学生是_____________校的学生(填“甲”或“乙”),理由是__________;
(3)假设乙校800名学生都参加此次测试,估计成绩优秀的学生人数.