题目内容
【题目】如图(1),AB∥CD,试求∠BPD与∠B、∠D的数量关系,说明理由.
(1)填空:
解:过点P作EF∥AB,
∴∠B+∠BPE=180°
∵AB∥CD,EF∥AB
∴ (如果两条直线都和第三条直线平行,那么这两条直线也互相平行)
∠EPD+ =180°
∴∠B+∠BPE+∠EPD+∠D=360°
∴∠B+∠BPD+∠D=360°
(2)依照上面的解题方法,观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的数量关系,并说明理由.
(3)观察图(3)和(4),已知AB∥CD,直接写出图中的∠BPD与∠B、∠D的数量关系,不用说明理由.
【答案】(1)CD∥EF,∠D;(2)猜想∠BPD=∠B+∠D,理由见解析;(3)∠B=∠BPD+∠D,理由见解析
【解析】
第一问利用平行线的性质解答;第二问作平行线,根据内错角相等可证∠BPD=∠B+∠D;第三问同样作平行线,根据内错角相等可证∠B=∠BPD+∠D.
(1)过点P作EF∥AB,
∴∠B+∠BPE=180°,
∵AB∥CD,EF∥AB,
∴CD∥EF(如果两条直线都和第三条直线平行,那么这两条直线也互相平行),
∴∠EPD+∠D=180°,
∴∠B+∠BPE+∠EPD+∠D=360°,
∴∠B+∠BPD+∠D=360°,
故答案为:CD∥EF,∠D;
(2)猜想∠BPD=∠B+∠D,
理由:过点P作EP∥AB,
∵EP∥AB,
∴∠B=∠BPE(两直线平行,内错角相等),
∵AB∥CD,EP∥AB,
∴CD∥EP(如果两条直线都和第三条直线平行,那么这两条直线也互相平行),
∴∠EPD=∠D,
∴∠BPD=∠B+∠D;
(3)图③结论:∠D=∠BPD+∠B,
理由是:过点P作EP∥AB,
∵EP∥AB,
∴∠B=∠BPE(两直线平行,内错角相等),
∵AB∥CD,EP∥AB,
∴CD∥EP(如果两条直线都和第三条直线平行,那么这两条直线也互相平行),
∴∠EPD=∠D,
∴∠BPD=∠B+∠D;
图④结论∠B=∠BPD+∠D,
理由是:∵EP∥AB,
∴∠B=∠BPE(两直线平行,内错角相等),
∵AB∥CD,EP∥AB,
∴CD∥EP(如果两条直线都和第三条直线平行,那么这两条直线也互相平行),
∴∠EPD=∠D,
∴∠B=∠BPD+∠D.
【题目】寒假结束了,为了了解九年级学生寒假体育锻炼情况,王老师调查了九年级所有学生寒假体育锻炼时间,并随即抽取10名学生进行统计,制作出如下统计图表:
编号 | 成绩 | 编号 | 成绩 |
① | B | ⑥ | A |
② | A | ⑦ | B |
③ | B | ⑧ | C |
④ | B | ⑨ | B |
⑤ | C | ⑩ | A |
根据统计图表信息解答下列问题:
(1)将条形统计图补充完整;
(2)若用扇形统计图来描述10名学生寒假体育锻炼情况,分别求A,B,C三个等级对应的扇形圆心角的度数;
(3)已知这次统计中共有60名学生寒假体育锻炼时间是A等,请你估计这次统计中B等,C等的学生各有多少名?