题目内容
【题目】某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植﹣亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z与x之间也大致满足如图2所示的一次函数关系.
(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?
(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式;
(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.
【答案】
(1)解:政府没出台补贴政策前,这种蔬菜的收益额为3000×800=2400000(元)
(2)解:设种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式分别为:
y=kx+800,z=k1x+3000,
分别把点(50,1200),(100,2700)代入得,
50k+800=1200,100k1+3000=2700,
解得:k=8,k1=﹣3,
种植亩数与政府补贴的函数关系为:y=8x+800
每亩蔬菜的收益与政府补贴的函数关系为z=﹣3x+3000(x>0)
(3)解:由题意:
w=yz=(8x+800)(﹣3x+3000)
=﹣24x2+21600x+2400000
=﹣24(x﹣450)2+7260000,
∴当x=450,即政府每亩补贴450元时,总收益额最大,为7260000元
【解析】(1)根据题意可知直接计算这种蔬菜的收益额为3000×800=2400000(元);(2)设种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式分别为:y=kx+800,z=k1x+3000,并根据图象上点的坐标利用待定系数法求函数的解析式即可;(3)表示出蔬菜的总收益w(元)与x之间的关系式,w=﹣24x2+21600x+2400000,利用二次函数最值问题求最大值.
【题目】如图1,将边长为1的正方形ABCD压扁为边长为1的菱形ABCD.在菱形ABCD中,∠A的大小为α,面积记为S.
(1)请补全下表:
30° | 45° | 60° | 90° | 120° | 135° | 150° | |
S | 1 |
(2)填空:
由(1)可以发现正方形在压扁的过程中,菱形的面积随着∠A大小的变化而变化,不妨把菱形的面积S记为S(α).例如:当α=30°时,;当α=135°时,.由上表可以得到( ______°);( ______°),…,由此可以归纳出.
(3) 两块相同的等腰直角三角板按如图的方式放置,AD=,∠AOB=α,试探究图中两个带阴影的三角形面积是否相等,并说明理由(注:可以利用(2)中的结论).
【题目】在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:
次数 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
黑棋数 | 2 | 5 | 1 | 5 | 4 | 7 | 4 | 3 | 3 | 6 |
根据以上数据,解答下列问题:
(I)直接填空:第10次摸棋子摸到黑棋子的频率为 ;
(Ⅱ)试估算袋中的白棋子数量.