题目内容
如图,□ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,∠ADC=54°,连接AE,则∠AEB的度数为( )
A.36° B.46° C.27° D.63°
A.36° B.46° C.27° D.63°
A
本题考查了圆周角定理及平行四边形的性质,解答本题的关键是根据平行四边形的性质得出∠B=∠ADC.根据BE是直径可得∠BAE=90°,然后在□ABCD中∠ADC=54°,可得∠B=54°,继而可求得∠AEB的度数.
解:∵四边形ABCD是平行四边形,∠ADC=54°,
∴∠B=∠ADC=54°,
∵BE为⊙O的直径,
∴∠BAE=90°,
∴∠AEB=90°﹣∠B=90°﹣54°=36°.
故选A.
解:∵四边形ABCD是平行四边形,∠ADC=54°,
∴∠B=∠ADC=54°,
∵BE为⊙O的直径,
∴∠BAE=90°,
∴∠AEB=90°﹣∠B=90°﹣54°=36°.
故选A.
练习册系列答案
相关题目