题目内容
【题目】在平面直角坐标系中,点A(2,0)B(0,4).以AB为斜边作等腰直角△ABC,则点C坐标为__________
【答案】(-1,1)或(3,3)
【解析】
分两种情况:(1)如图①,点C在第一象限,(2)如图②,点C在第二象限.针对每一种情况,分别画出图形,再利用全等求出距离,从而得出C点坐标.
解:分两种情况:
(1)如图①,过点C作CD⊥OB于D,CE⊥OA于E.
∵∠BCA=∠DCE=90°,
在△BCD与△ACE中,
∠BDC=∠AEC,∠BCD=∠ACE,BC=AC,
∴△BCD≌△ACE,
∴AE=BD,CE=CD=OE,
∵AB=,
∴AC=AB=,
CE+(CE2)=AC=10,
解得CE=3或1(不合题意舍去).
则点C坐标为(3,3);
(2)如图②,过点C作CD⊥OB于D,CE⊥OA于E.
∵∠BCA=∠DCE=90°,
在△BCD与△ACE中,
∠BDC=∠AEC,∠BCD=∠ACE,BC=AC,
∴△BCD≌△ACE,
∴AE=BD,CE=CD=OE,
∵AB=,
∴AC=AB=,
CE+(CE+2)=AC=10,
解得CE=1或3(不合题意舍去).
则点C坐标为(1,1).
综上可知点C坐标为(1,1)和(3,3).
故答案为:(1,1)和(3,3).
练习册系列答案
相关题目